Thursday, November 28, 2019

Air Conditioning Essay Example

Air Conditioning Essay HVAC Systems: Air Conditioning Dr. Harjit Singh Room 116 Howell Building harjit. [emailprotected] ac. uk Fridays 09. 30 – 11. 30am Unless otherwise specified For students enquiries: 1 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Introduction to the module †¢ Credit: 15 †¢ Teaching materials: – Provided for the MSc students. – Undergrads: Buy them from the stores. †¢ Assignment: to be handed two weeks before Xmas, deadline-28 Jan 2013 †¢ Students enquiries: – Fridays 09. 30 – 11. 0am Unless otherwise specified – Outside these hours: email me for appointment: harjit. [emailprotected] ac. uk †¢ Is the teaching materials enough: yes, but further reading is recommended – Eastop, T. D and Watson. E. (1992). Mechanical Services for Buildings, Longman Scientific and Technical – CIBSE Guide A, Section 1: Environmental criteria for design, CIBSE, 2006 – Jones, W. P. (2003). Air Conditioning Engineering (5th edition), Arnold Publishing. 2 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel UniversityModule Content †¢ Part 1 Basic principles of air conditioning system design – Psychrometry – Basic Air Conditioning Processes (heating, cooling, humidification/dehumidification) – Thermal Comfort – Design Conditions – Basic Air Conditioning System Design †¢ Part 2 – Air Conditioning Systems (Design and Applications) – Air Conditioning System Classification – All-air systems (constant volume and variable volume) – Air and water systems (induction and fan coil systems – panel type systems) – All water systems (non ventilation fan coils and heat pumps) 3Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Basic Requirements †¢ For revising the basics (Chapter 1 ‘Building Air Conditio ning’ book) – – – – – Thermodynamic properties and how to obtain them from tables and diagrams Open and closed systems First law of thermodynamics (SFEE equation). Equation of state for pure substances Second law of thermodynamics  » Thermodynamic cycles  » Thermal efficiency  » Entropy †¢ Only after a good understanding of this chapter (more like â€Å"remembering the information! †, you can comfortably proceed to later chapters eg. Chapter 2 – ‘Psychrometry’ 4Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Heat transfer Basics â€Å"Fundamentals of Thermal-Fluid Sciences† by Cengel Turner, McGraw-Hill, ISBN 0-07-239054-9 5 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Psychrometery (Chapter 2: ‘Building Air Conditioning’ book) ? This chapter explains the principles of psychrometry as applied t o the study of modern air conditioning systems ?Learning Objectives After covering this chapter and completing the personal feedback questions, you should be able to: ? Understand the properties of humid air Given two properties of humid air, calculate other properties of interest for the same state point ?Be able to use psychrometric tables and the psychrometric chart as practical tools for obtaining quickly the properties of humid air. 6 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Basics- Definition of Air Conditioning Air conditioning may be defined as the simultaneous control of all (or at least the first three) of those factors affecting both the physical the chemical conditions of the surrounding atmosphere within a structure. These factors are: 1. 2. . 4. 5. 6. 7. Temperature Humidity Air movement Dust Bacteria Odours Toxic gases 7 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Basic s- Air conditioned air Air conditioned air: is air that has undergone one or a combination of the following processes: 1. Heating 2. Cooling 3. Humidification 4. Dehumidification 5. Circulation 6. Cleaning and filtering The ultimate goal of air conditioning process is achieving the comfort conditions for the occupants of a building 8 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel UniversityPsychrometry (Chapter 2: ‘Building Air Conditioning’ book) Psychrometry is the branch of science covering the properties of humid air Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University 9 Introduction ? Air is the main career (working fluid) of heating or cooling energy in air conditioning systems ? Before it is supplied to the indoor spaces of a building, the air is conditioned by passing it through the various system components. These may include heaters, coolers humidifiers, etc. ?The study of the properties of humid air is called psychrometry 10Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Humid Air †¢ Humid air is a mixture of dry air and water vapour. †¢ It is reasonably accurate to assume that both dry air and water vapour †¢ †¢ obey the ideal gas law. Hence, it is rational to assume that humid air behaves as an ideal gas mixture. If we consider that a closed system consists of a gaseous mixture of two or more ideal gases, then the composition of the mixture can be described either by giving the mass or the number of moles of each component present. The total mass of the mixture, m, is the sum of the masses of its components: ? m1 ? m2 ? m3 ? . ? mn m ? ? mi i ? 1 i ? n or, 11 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Humid Air †¢ Total number of moles in the mixture, n, is the sum of the number of moles of each of its components: or, n = n1 + n 2 + n 3 + + n n n = ? ni i ? 1 i ? n †¢ The apparent or average molecular weight of the mixture, M, is defined as the ratio of the total mass of the mixture, m, to the total number of moles of the mixture, n. n1 M 1 + n2 M 2 + + nn M n M = n 12 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel UniversityDaltons law of Partial Pressures †¢ Pressure exerted by a mixture of ideal gases is the sum of the pressures exerted by each gas if it were alone at the same temperature and volume of the mixture P1 P2 P = P1+P2 X X X X X X O X O O O O O O O T X X X X V X X X X X X + T O O O O V O = X O X X O X O X O X O O X O O X O X O T O V O GAS A MASS M1 GAS B MASS M2 P ? P ? P2 ? P3 ? . ? Pn 1 P ? ? Pi i ? 1 i ? n MIXTURE A + B MASS M = M1 + M2 †¢ Pressure exerted by each gas in the mixture is called its Partial Pressure 13 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel UniversityDry Air †¢ Atmospheric air contains several gase ous components plus water vapour and contaminants such as dust and pollutants. †¢ The term dry air refers only to the gaseous components when all water vapour and contaminants have been removed. †¢ The molar analysis of a typical sample of dry air is given in the Table. Gaseous Component Nitrogen N2 Oxygen O2 Carbon Dioxide CO2 Hydrogen H2 Argon Ar Total Molar Fraction % 78. 03 20. 99 0. 03 0. 01 0. 94 100. 00 Molecular Weight 28. 02 32. 00 44. 00 2. 02 39. 91 †¢ The apparent molecular weight of dry air is: Ma ? ? (Molar Fraction ? Mol. Weight) i ? 1 i ? n †¢ Ma = (28. 2 x 0. 7803) + (32 x 0. 2099) + (44 x 0. 0003) + (2. 02 x 0. 0001) + (39. 91 x 0. 0094) = 28. 97 †¢ The apparent molecular weight of dry air = 28. 97 kg/kmol 14 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Water Vapour WATER VAPOUR WATER VAPOUR LIQUID WATER (A) LIQUID WATER (B) (C) Consider the vessel shown in the Fig. A above which contains a uni t mass of saturated liquid water (1 kg) at a pressure of 1. 01325 bar (1 atm). This state is represented by point 1 on the T-v diagram in Figure D. Now suppose the water is slowly heated while its pressure is kept constant.This will result in the formation of vapour with considerable increase in the specific volume. As shown in Figure B, the system would now consist of a two-phase liquid vapour mixture. If the contents of the vessel are at an equilibrium condition, that is the temperatures of the vapour and liquid are equal, the liquid phase is saturated liquid and the vapour phase is saturated vapour. The pressure that the vapour exerts at this condition is known as the saturation vapour pressure (SVP). 15 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Water Vapour SVP Vapour pressure TemperatureIf more heat is added to the vessel, more water will be evaporated and when all liquid has evaporated the system would reach point 2, the satura ted vapour state. Further addition of heat at constant pressure will result in an increase in both temperature and specific volume. The condition of the system would now be represented by point 3 in Figure D. The state of the system represented by point 3 is often referred to as a superheated vapour state. The Saturated Vapour Pressure varies with temperature as shown in the above figure, and values are published in property Tables for Saturated Water and Steam (Rogers and Mayhew) or Steam Tables. 6 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Molecular Weight of Water Vapour The molecular weight of water vapour can be obtained from the molecular weights of its chemical composition, H2O. Ms = 2 x 1. 01 + 1 x 16 = 18. 02 kg/kmol 17 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Relative Humidity Relative humidity is defined as the ratio of the vapour pressure of water vapour in the air, Ps, to the saturated vapour pressure at the same air temperature, Pss. This ratio is expressed as a percentage.Relative humidity is denoted by % RH or ?. Ps ? = x 100 P ss A Pss Ps Temperature oC 100% RH corresponds to the saturated vapour line. Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University 18 Relative Humidity Air at 25  °C has a vapour pressure of 17 mbar. Using the Thermodynamic Property Tables calculate the relative humidity. 19 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Relative Humidity Air at 25  °C has a vapour pressure of 17 mbar. Using the Thermodynamic Property Tables calculate the relative humidity. ? =Ps x 100 P ss 20 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Relative Humidity 21 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Moisture Content †¢ The moisture content of humid air, g, is defined as the mass of water vapour contained in 1 kg of dry air. The moisture content is sometimes referred to as Specific Humidity, Absolute Humidity or Humidity Ratio. †¢ Note: some properties of humid air are based on 1 kg of dry air †¢ †¢ From the definition of moisture content: g = ms ma kg of water vapour/ kg of dry air From the ideal gas law, †¢ for dry air: P a V a = ma R a T a †¢ for water vapour: ? Pa V a ma = Ra T a ? ms = Ps V s Rs T s P s V s = ms R s T s V a =V s But for the mixture and T a = Ts Note: g and gs are interchangeably used for the moisture content in air Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University 22 Moisture Content substituting equations (2. 3) and (2. 4) in equation (2. 2) gives: 0. 2869 P s g = Ra Ps = = 0. 622 P s R s P a 0. 4615 P a Pa Also 18. 02 P s g ? M s Ps = = 0. 622 P s M a P a 28. 7 P a Pa – But, P a = P at P s – then, Ps g = 0. 622 kg/ kg of dry air P at P s 23 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Moisture Content Determine the moisture content of air at atmospheric pressure of 1013 mbar and vapour pressure 20 mbar 24 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Moisture Content Determine the moisture content of air at atmospheric pressure of 1013 mbar and vapour pressure 20 mbar R a P s = 0. 2869 P s = 0. 622 P s g= R s P a 0. 615 P a Pa Also M s P s = 18. 02 P s = 0. 622 P s g? M a P a 28. 97 P a Pa 25 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Moisture Content at Saturation †¢ The moisture content corresponding to the saturation vapour pressure is known as the saturation moisture content, gss †¢ It can be calculated from the equation for g by substituting Pss for Ps. The saturation moisture content can be plotted against temperature, as shown in the Figure below. g ss = 0. 622 P ss Pat P ss Variation of saturation moisture content 26Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Percentage Saturation †¢ Percentage saturation,  µ , is defined as the ratio of the moisture content in the air to the moisture content at saturation at the same temperature, expressed as a percentage. The percentage saturation of the humid air at condition A in Figure below is therefore given by: gs ? = x 100 g ss A gss gs Temperature oC Note: g and gs are interchangeably used for moisture content in air Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University 27Percentage Saturation Rearranging, taking into account the equations for gs ; gss Ps g P at P s x 100 ? = s x 100 = g ss 0. 622 P ss P at P ss 0. 622 – simplifying: ( ) ( ) ? = Ps ? Pat Pss ? 100 ? ? = ? ? Pat Pss P ss ( Pat P s ) ( Pat P s ) – At a given dry bulb temperature this expression will vary wit h the vapour pressure but as Ps and Pss are small compared with Pat, the variation between %RH and  µ will also be small. – The quantity ( P at P ss ) ( P at P s ) is nearly 1 – So for all practical purposes, the percentage saturation is interchangeable with percentage relative humidity. 8 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Percentage Saturation †¢ Explain the difference between percentage saturation and relative humidity. †¢ For air at atmospheric pressure of 1013 mbar, 20  °C dry bulb temperature and 13. 67 mb vapour pressure, determine: a) the relative humidity b) the difference between the values of relative humidity and percentage saturation. 29 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Specific Volume The specific volume, v, of humid air is defined as the volume of humid air m3) per unit mass of dry air (kg) and the water vapour associated wi th it. It is defined as: v= From Daltons law, V = Va = Vs and from the ideal gas law: V ma 3 m /kg of dry air V =V a = but, ma R a T a Pa Pa = Pat Ps hence, v = R a Ta (Pat Ps) 30 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Specific Volume In relation to the 100% saturation line, lines of constant specific volume can be drawn on a temperature versus moisture content diagram, as shown in Figure below 100% saturation Lines of constant Specific volume gss gs Temperature oC 1 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Relationship between air density and specific volume Air density, ? , is defined as the mass of humid air per unit volume. ?= m ma + ms 1 + g = = V V V ma v= V ma but, hence, ?= (1 + g) v Although the difference between density and the reciprocal of specific volume is relatively small, it is important to note that, for air conditioning calculations, the two quantities are dif ferent. Specific volume is defined in terms of unit mass of dry air; density is defined in terms of unit mass of the mixture. 2 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Dry-Bulb Temperature The dry bulb temperature is the temperature indicated by a dry buld thermometer shielded from radiation. The dry bulb temperature indicates the degree of the sensible heat content of the air but it does not give any information about the latent heat content. The dry bulb temperature is denoted by t and is measured in  °C. The thermometer used to measure t 33 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel UniversityWet-Bulb Temperature The wet bulb temperature is the temperature indicated by a thermometer whose bulb is covered by a muslin sleeve which is kept moist with water, is freely exposed to the air and is free from radiation. The reading obtained is affected by air movement and for this reason there are t wo wet bulb temperatures — sling and screen. 34 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Wet-Bulb Temperature A. The sling wet bulb temperature is obtained in a moving air stream, which has a velocity of about 2 ms-1.The Sling WBT is denoted by t? , and is measured in  °C B. The screen wet bulb temperature is taken in still air. The wet bulb thermometer is usually installed in a Stevenson screen. The Stevenson screen is a method more favoured by meteorological and weather stations and is essentially a louvred box in which the thermometers are housed. The louvres allow the free passage of air whilst eliminating radiation effects. The screen WBT is denoted by tsc, and is measured in  °C B A As air conditioning involves air movement the sling WBT is preferred for air conditioning calculations. 5 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Wet-Bulb Temperature †¢ The numeri cal difference between the DBT and the WBT is known as the wet-bulb depression. †¢ Dry-bulb and Wet-bulb temperatures measured together are the most popular method for obtaining the air properties of humid air for air conditioning calculations. 36 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Dew Point Temperature If air is cooled at constant moisture content, see Figure below, 100% saturationA gs Temperature oC tdb t the temperature will eventually reach the SVP curve and at this point condensation of the water vapour will begin to take place. This temperature is known as the dew point temperature (DPT). Dew point temperature may also be defined as the temperature of saturated air which has the same vapour pressure as the moist air under consideration. 37 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Dew Point Temperature When reaching the dew point temperature, dew, clouds or fog can b egin to form 38Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Specific Enthalpy The specific enthalpy of humid air is equal to the sum of the individual partial enthalpies of its constituents. Consider 1 kg of dry air and associated moisture content, g, at a dry bulb temperature t  °C. Using a temperature datum of 0 °C, the sensible heat content of the air, h1, is given by: h1 = 1 ? c pa ? (t 0) = 1. 005 ? t where: c pa = specific heat of dry air = 1. 005 kJ/kg ? C and the sensible heat of water vapour, h2, is: h2 = g ? c ps ? (t 0) = 1. 89 g t where: ps = specific heat of water vapour = 1. 89 kJ/kg ? C If it is considered that all the water vapour in the air has been formed by evaporation of water at 0o C, the latent heat associated with the moisture content, h3, is given by: where: h3 = g ? h fg h fg = the latent heat of evaporation of water at 0o C = 2501 kJ/ kg 39 Building Services Engineering: Building Air Conditioning Module ( ME5508), Brunel University Specific Enthalpy †¢ The specific heat of humid air, h, is thus given by: or, h = h1 + h 2 + h 3 rearranging gives: h = 1. 005 t + 1. 89 g t + 2501 g h = (1. 005 + 1. 89 g) t + 2501 g the term (1. 005 + 1. 9 g)is known as the humid specific heat. 40 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Psychrometric Equation Consider the wet-bulb thermometer where air flows across the bulb, which is covered by a muslin sleeve. The muslin sleeve is kept moist by a reservoir of water. At equilibrium conditions, the heat lost due to moisture evaporation will equal the sensible heat gained; the air close to the thermometer bulb is saturated and its moisture content is gss 41 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Psychrometric EquationThe latent heat lost is proportional to the moisture content difference between the air close to the thermometer bulb and the ambient air ( g ss? g s ) The sensible heat gained is proportional to the difference in temperature between the ambient air and the thermometer bulb i. e. (t t? ) At equilibrium conditions: C1 ( g ss? g s ) = C 2 (t t ? ) Where C1 and C2 are constants related to the surface area, specific heat and latent heat of evaporation Ps p s? s But, and g s = 0. 622 g ss? = 0. 622 P at P s Pat P s? s 42 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel UniversityPsychrometric Equation Ps and Pss are small compared to Pat and so the above equations can be written as: g s = 0. 622 Ps , P ? g ss? = 0. 622 ss Pat Pat Subsituting the above equations in equation 2. 10 gives: 0. 622 C1 Pat ( P ss? P s ) = C 2 (t t ? ) or, Ps = Pss? Pat A (t t ? ) The above equation is known as the psychrometric equation The psychrometric constant depends on the air velocity across the bulb. it will therefore be different for sling and screen psychrometers. 43 Building Services Engine ering: Building Air Conditioning Module (ME5508), Brunel UniversityPsychrometric constants Sling A = 6. 66 x 10 -4 A = 5. 94 x 10 -4 K -1 K -1 for t ? ? 0 o C for t ? lt; 0 o C Screen A = 7. 99 x 10 -4 A = 7. 20 x 10 -4 K -1 K -1 for t ? ? 0 o C for t ? lt; 0 o C 44 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Adiabatic Saturation INSULATION t 1 g 1 t 2 g 2 In thermodynamics, an adiabatic process is one in which no external heat is allowed to enter or leave the system. Consider the above figure in which air flows through a duct at the bottom of which there is an open water tank.The duct casing is insulated so that there is no heat flow into or out of the duct from or to the surroundings. 45 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Adiabatic Saturation †¢ Humid air enters the duct at dry-bulb temperature t1, pressure P and moisture content g1 and as it passes through the duct it com es into contact with the pool of water. If the entering air is not saturated, some of the water would evaporate causing an increase in the moisture content of the air leaving the duct.The energy required for evaporation of the water would come from the humid air and its temperature would decrease. At steady state, the sensible heat lost by the humid air would be equal to the latent heat gained from the increase in its moisture content. If the air leaves with a dry-bulb temperature t2 and moisture content g2, then applying the steady flow energy equation to the control volume shown in Figure gives: dividing through by ,and substituting for h in terms of the specific heat and temperature gives: †¢ †¢ ( ma h a1 + ms1 h s1 ) mw h fg = ( ma h a 2 + ms2 h s2 ) ? ? ? ? ? 1 ( c pa + g 1 c ps ) ( g 2 g 1 ) h fg = t 2 ( c pa + g 2 c ps ) 46 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Adiabatic Saturation †¢ where: g 2 g1 = ? m w ? ma †¢ but for humid air, c p = c pa + g c p s †¢ hence, c p ( t 1 t 2 ) = ( g 2 g 1 ) h fg †¢ †¢ †¢ If the duct is sufficiently long, at the end of the process the air will be completely saturated. The temperature at which this occurs is known as the adiabatic saturation temperature, tas, and the corresponding moisture content is gas. Therefore, c p ( t 1 t as ) = ( g as g 1 ) h fg 7 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Adiabatic Saturation †¢ The equation can be rearranged as follows: ( g as g 1 ) cp = = Constant ( t 1 t as ) h fg †¢ This equation indicates that, on a dry-bulb temperature and moisture content co-ordinate system, there is a line of constant adiabatic saturation temperature joining the state points (tas,gas) and (t1,g1). This line can be represented on the T-v diagram as shown in Figure . 48 Building Services Engineering: Building Air Conditioning Module (ME5508), Brun el UniversityAdiabatic Saturation For dry air and water vapour mixtures, the adiabatic saturation temperature is the same as the sling wet-bulb temperature. At the saturated condition, the dry-bulb temperature, t2, the wet-bulb temperature, t2, and the adiabatic saturation temperature, tas, are equal. 49 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Example The dry and wet bulb temperature readings given by a sling psychrometer in a room at an atmospheric pressure of 1013 mbar are 20 °C dry bulb and 15  °C wet bulb respectively.Determine from first principles: 1) vapour pressure 2) relative humidity 3) moisture content 4) enthalpy 5) dew point temperature 50 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Problem PF2-4 †¢ A sample of air at a total pressure of 900 mbar has a measured condition of 28  °C dry bulb and 20 °C wet bulb. Using data from Rogers ; Mayhew tables, calculate for this sample of air: 1) vapour pressure 2) relative humidity 3) dew point temperature 4) T he moisture content 5) the humid volume 6) the enthalpy 51Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Psychrometric Tables ? The properties of humid air are published in tables which for a given dry-bulb temperature and atmospheric pressure, usually 1013. 25 mbar, list property values, as shown in Table 2. 2 at the end of this chapter. It is important to note that the moisture content, the specific enthalpy and the specific volume are given per kg of dry air. Also, at 100% saturation the relative humidity is also 100% and all the temperatures are equal. The vapour pressure at this condition is the saturation vapour pressure. Property values which are not specified in the tables can be determined with reasonable accuracy by performing linear interpolation between the closest values specified in the Tables. 52 Building Services Engineering: Buil ding Air Conditioning Module (ME5508), Brunel University Psychrometric Chart The psychrometric tables are useful in accurately determining the properties of humid air at a given state point but provide little information on how the properties change during a process. This information is provided by the psychrometric chart which is a graphical representation of the important properties of humid air.The chart provides a picture of the way in which the state of moist air alters as an air conditioning process takes place or a physical process occurs. A psychrometric chart is shown schematically in Figure 2-14. A full scale chart published by CIBSE is given at the end of this volume. 53 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Psychrometric Chart 0. 9 90% 80 % g kg/kg 0. 018 40 % 70 % 0. 85 60 % 20 % 50 0. 015 15 0. 8 10 5 % 30 0. 010 % 20 0. 005 10% 5 10 15 20 25 30 35 40 t C 54 Building Services Engineering: Building Air Conditioning M odule (ME5508), Brunel UniversityPsychrometric Chart What are the common types of psychrometric charts, which are in use by Engineers? 55 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Psychrometric Chart 56 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Psychrometric Chart 57 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University The Psychrometric Chart We Are Going To Use! Percentage Saturation ~(Relative humedity) Based on Parametric Pressure of 101 325 kPa Dry Bulb Temperature  °C Specific Enthalpy Moisture Content 58Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Problem PF2-5 †¢ For air at atmospheric pressure of 1013 mbar, dry bulb temperature of 30  °C and relative humidity of 60%, determine without using the psychrometric chart: †¢ 1) moisture content 2) enthalpy 3) percentage saturation 4) s pecific volume 5) percentage saturation 6) dew point temperature †¢ For the same conditions but now using the chart, determine: 1) the wet bulb temperature 2) enthalpy 3) moisture content 4) dew point temperature 59 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel UniversityProblem PF2-6 Complete the following table, using the psychrometric chart: Dry bulb  °C 30 40 20 0. 012 20 20 40 0. 9 Wet bulb  °C 24 80 Dew point Moisture content kg/kg Relative humidity % Enthalpy kJ/kg Specific volume m3/kg 60 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Problem PF2-6 Complete the following table, using the psychrometric chart: Dry bulb  °C 30 40 Wet bulb  °C 24 Dew point Moisture content kg/kg Relative humidity % Enthalpy kJ/kg Specific volume m3/kg 21. 5 20. 7 20 0. 0162 35 38. 6 20 26. 2 24. 4 23. 6 20 16. 9 20 59. 5 0. 155 31. 6 0. 0148 40 27 0. 012 0. 0148 100 71. 8 80 73. 1 69. 6 57. 5 0. 882 0. 9 09 0. 893 0. 9 0. 85 61 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Chapter 3: Typical Air Conditioning Processes Learning Objectives of This Chapter †¢ Represent psychrometric processes on the psychrometric chart. †¢ Apply the psychrometric principles developed in Chapter 2 to psychrometric processes, using psychrometric parameters obtained from both first principles and the psychrometric chart. †¢ Analyze both water and steam injection humidification processes. Distinguish between sensible heating and cooling, humidification and dehumidification. †¢ Distinguish between mechanical and chemical dehumidification. †¢ Analyze spray water processes. 62 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Introduction †¢ We can represent complete air conditioning systems on the psychrometric chart by combining psychrometric processes in each component of the system. The he at and mass flows across each component are represented by the state points of the air at entry and exit from the component. The most common processes which take place as the air flows through a single component or a combination of components in air conditioning systems are: – mixing of two air streams – sensible heating and cooling – humidification and dehumidification †¢ In this chapter we will consider the basic air conditioning processes, illustrate their representation on the psychrometric chart and show how important information on each process can be derived from the chart. We will concentrate on the psychrometrics of each process rather than the components of the air conditioning system. 3 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Adiabatic mixing Why Air Mixing? †¢ To keep Air Fresh †¢ Fresh air mixed with recycled air †¢ More efficient process than heating or cooling fresh air (excep t in special circumstances where no recycled air is allowed) 64 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Adiabatic mixing Mass and energy balance equations for the process: ? ? ? ma1 + ma2 = ma3 (dry air) ? ? ? ms1 + ms2 = ms3 (water vapour) ? ? ms = g ma ? ? Q =W = 0 1 ma1 + g 2 ma2 = g 3 ma3 ? ? ? and ignoring kinetic and potential energy terms ? ? ? ma1 ( ha1 + g1 hs1 ) + ma2 ( ha2 + g 2 hs2 ) = ma3 ( ha3 + g 3 hs3 ) ? ? ? ma1 h1 + ma2 h2 = ma3 h3 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University 65 Adiabatic mixing on the Chart ? ? ? ma1 h1 + ma2 h2 = ma3 h3 1 3 ? ? ? ma1 h1 + ma2 h2 = ma3 h3 2 Dry Bulb Temperature  °C 66 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Moisture Content ? ? ? ma1 h1 + ma2 h2 = ma3 h3 Adiabatic mixingThe three state points lie on a straight line on the chart with the mixture state point dividing the line in two segments whose ratio is inversely proportional to the ratio of the masses of dry air such that: ? ma 2 h1 ? h3 g1 ? g 3 ? ? ? ma1 h3 ? h2 g 3 ? g 2 In design calculations we can assume with reasonable accuracy that the mass flow of dry air is equal to the mass flow of humid air. This arises from the fact that the mass of water vapour in one kg of moist air is very small compared with the mass of dry air in the mixture. 67 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel UniversityAdiabatic mixing: Example A stream of 2 kgs-1 of moist air at a dry-bulb temperature of 5 oC and moisture content of 0. 002 kg/kgof_dry_air, mixes adiabatically with a second stream of 3 kgs-1 at a dry-bulb temperature of 20 oC and 50% relative humidity. The pressure is constant at 1 atmosphere. Determine the enthalpy, moisture content, and dry-bulb temperature of the mixture. Assuming the mass flow of dry air is equal to the mass flow of moist air: Stream 1: ma1=m1=2kgs-1, ta1=5oC and g=0. 002kg/kgdry-air mixes adiabatically with: Stream 2: ma2= m2=3 kgs-1 ta1=20 oC and ? 2=50%. h3=? , g3=? , and t3=? 68Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Adiabatic mixing: Example Solution: †¢ Using the psychrometric chart we get: h1 = 10. 05 kJ/kg, g2 = 0. 0074 kg/kg, h2 = 38. 84 kJ/kg †¢ from mass balance ? ? ? m3 = m2 + m1 = 2 + 3 = 5 kg/s ? ma 2 h1 ? h3 g1 ? g 3 ? ? ? ma1 h3 ? h2 g 3 ? g 2 ? ? m1 h1 + m2 h2 2 ? 10. 05 + 3 ? 38. 84 = = 27. 5 kJ/kg dry air h3 = 5 ? m3 ? ? m1 g 1 + m2 g 2 2 ? 0. 002 + 3 ? 0. 0074 = = 0. 00524 kg/kg dry air g3 = 5 ? m3 69 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Adiabatic mixing: Example 70Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University PF3-1 A stream of recalculated air at a state of 25 oC db and 40 KJkg-1 of dry air specific enthalpy, is to be mixed with a fresh air stream a t 20 oC db and 12 oC wb. If the mixture by mass of recalculated air to fresh air is 75% to 25%, calculate the supply air conditions. 71 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Sensible heating and cooling In sensible heating and cooling, the temperature of the air increases or decreases but the moisture content remains constant.Hence, these processes may be defined by horizontal lines on the psychrometric chart. Can you think of an example sensible heating system? 72 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Sensible heating An example sensible heating system is: The hair dryer! Heating element 1 Air in 2 Air out 1 2 g1=g2 t2 t1 Sensible heating can be achieved by passing the air through any sort of heater. ? Q = I ? V ? ma ( h2 h1 ) ? Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University 73 Sensible cooling Cooling fluid in 1 Air in Cooling fl uid out 2 Air out 2 1 g1=g2 2 t1 Sensible cooling, can be achieved by passing the air through cooler coils. The final temperature must always be above the dew point temperature otherwise dehumidification will occur as water condenses on the coil, introducing mass transfer. 74 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Example Moist air enters a duct at 10 oC dry-bulb temperature and 80% relative humidity, with a volumetric flow rate of 120 m3/min. The air is sensibly heated at constant pressure of 1 atmosphere to 25 oC dry-bulb temperature. Determine the rate of heat transfer during the process in kW. ? Q = ma ( h2 h1 ) 75 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Example Solution o o ? t 1 = 10 C , t 2 = 25 C ,V a = Given: 120 = 2 m3 /s , ? 1 = 80% 60 From the psychrometric chart: h1 = 25. 5 kJ/kg dry air , g 1 = 0. 0061 kg/kg dry air, 3 v1 = 0. 81 m /kg dry air mass flow of dry air: ? V 2 = = = 2. 47 kg/s ? ma v 0. 81 g 1 = g 2 hence state 2 of the process can be plotted on the psychrometric chart using the dry-bulb temperature and the moisture content. 76 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel UniversityExample Heating fluid in 1 Air in Heating fluid out 2 Air out 40. 8 kJ/kg 25. 5 kJ/kg 80% 1 2 0. 0061 kg/kg From chart h2 = 40. 6 kJ/kg dry air Hence, ? ? Q = ma ( h2 h1 ) = 2. 47 ? (40. 6 25. 5) = 37. 3 kW 10 C 25 C 77 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Examples PF3-2 †¢ Calculate the load on a cooler coil which sensibly cools 1. 5 m3s-1 of moist air initially at 21 oC db, 15 oC wb and 1013. 25 mb, by 5 oC. PF3-3 †¢ Calculate the load on a heater battery which heats 1. 5 m3s-1 of moist air initially at 21 oC db, 15 oC wb and 1013. 25 mb by 20 oC.If low pressure hot water at 85 oC flow and 75 oC return is used, calculate the flow rate of water in kgs- 1. Take the specific heat of water as 4. 2 kJkg-1K-1. 78 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Humidification †¢ Can be defined as: â€Å"The addition of moisture to the Air† †¢ In air conditioning systems, it is often necessary to increase the moisture content of the air supplied to the conditioned spaces. †¢ It may be accomplished either by the addition of water or steam. Each process is entirely different in terms of psychrometry and equipment required to produce the change. 9 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Humidification The most common methods of using water as a humidifying agent are: †¢ †¢ †¢ The injection of water drops of aerosol size into the air duct or directly into the space being conditioned. The passage of air through a spray chamber containing a very large number of small water droplets (ie. air washer). The passage o f air over a large wetted surface or pool of water (ie. pan humidifier). 80 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Humidification The humidification equipment does not operate at 100% efficiency. The efficiency definition is usually based on the overall change of state that the air undergoes. †¢ For a 100% efficient process, the final state point of the air would be on the 100% saturation line. 81 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Humidification 1 Air in pump 2 Air out h2 h1 h3 3 2 1 t2 g3 g2 g1 humidifier t1 The effectiveness of the humidification system can be defined as: E= ( h2 h1 ) ( h3 h1 ) or ( g 2 g1 ) E= ( g 3 g1 ) ? = 100 ? E 82 and the humidifying efficiency as:Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Water injection humidification In cases where all the water injected into the air is evaporated, the hum idification process is illustrated in Figure. 1 Air in pump humidifier Energy balance 2 Air out h2 h1 h3 3 2 1 t2 t1 g3 g2 g1 ? ? ? ? ? ma1 ha1 + ms1 hs1 + m? h? = ma2 ha2 + ms2 hs2 but ? ? ? ma1 = ma2 = ma 83 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Water injection humidification Dividing above equation by ? magives ? mw ha1 + g 1 hs1 + h w = h a2 + g 2 h s 2 ? a but hence ha + g hs = h ? mw h1 + h w = h2 ? ma ? ? ? ? ? ma1 + ms1 + mw = ma2 + ms2 dividing through by ? ma gives: ? mw = g2 g1 + ? ma Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University 84 Example In a water injection humidification process, water at a temperature of 0 oC is injected into the air stream at a rate of 0. 002 kgs-1. If the air entering the process is at 20 oC dry-bulb and 15 oC wet-bulb, and the mass flow of dry air is 1. 5 kgs-1, determine the enthalpy and moisture content of the moist air at the end of the process and draw the process on the sychrometric chart. Assume that all the water injected is evaporated. 85 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Effect of water temperature on water injection humidification 1 Air in pump humidifier 2,3,4 Air out tw =0 C tw =100 C 23 4 7o 1 g2 g1 We can observe from this figure that the final condition of any water injection humidification process, where all the water is evaporated, will lie between the limits of the limits of the 0oC and 100oC processes and will be very close to the wet bulb temperature temperature process.It is therefore reasonable to assume for all practical purposes that a purposes that a water injection humidification process, where all the injected water evaporates, follows a constant wet bulb temperature line on the psychrometric psychrometric chart. 86 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Steam Injection Humidification 1 Air in steam Steam humidifier 2 Air out 2 3 ts =100 C ts =234 C 4o g2 g1 1 †¢ Steam injection humidification is achieved by injecting steam through a number of fine nozzles into the air stream.If none of the injected steam condenses during the process, we can analyze the steam injection process by applying the mass and energy balance equations in a similar manner to that of the water injection process. †¢ For all practical purposes, we can therefore assume that in a steam injection humidification process, where none of the steam condenses, the change of state takes place along a constant dry bulb temperature line. 87 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University ExampleIn a steam injection humidification process, 0. 02 kg/s of dry saturated steam is injected into an air stream initially at 25 oC dry bulb and 12 oC wet bulb temperature. If none of the steam condenses and the mass flow rate of dry air is 2 kgs-1 determine the final enthalpy and moisture content of the air stream leaving the process. 88 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Dehumidification Although sensible heating reduces the percentage saturation of moist air, it does not reduce its moisture moisture content.In air conditioning applications, the the principal methods employed to reduce the moisture moisture content of moist air are: †¢cooling to a temperature below the dew point †¢chemical methods (sorbent dehumidifiers) 89 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Cooling to a temperature below the dew point Mechanical dehumidification Cooling fluid in Cooling coil d 2 Air out 1 1 3 g1 Cooling fluid out In the case of using cooler coils, tADP is known as the mean coil surface temperature. 3= tADP t1 ADP: Apparatus Dew Temperature 1-d-3: Assuming the process involves 100% of the air passing through: 90 Building Services Engineeri ng: Building Air Conditioning Module (ME5508), Brunel University Cooling to a temperature below the dew point In practise, some of the air will escape the process (contact with the coil surface) and hence will keep its moisture. After the coil, this air will mix with the dehumidified air . Therefore, the actual process does not follow 1-3, but 1-2.In air conditioning applications, dehumidification process is represented by a straight line between 1 and 3, where 2 is on this line. 3 2 t3 t2 d 1 g1 g2 g3 t1 91 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Cooling to a temperature below the dew point h1 Cooling fluid in h2 1 2 h3 d 1 g1 g2 g3 Air out Cooling fluid out 3 2 t1 ? t3= tADP t2 The effectiveness of the dehumidification process is defined by the terms contact factor (1 by-pass factor or the ? ) The contact factor is defined as: Similarly, by-pass factor: g 1 g 2 ) ( h1 h2 ) ? = = ( g 1 g 3 ) ( h1 h3 ) ( g 2 g 3 ) ( h 2 h3 ) (1 ? ) = = ( g 1 g 3 ) ( h1 h3 ) 92 Building Services Engineering: Building Air Conditioning Module (ME5508),Brunel University h1 h2 h3 3 2 1 g1 g2 g3 t3= tADP t2 t1 93 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Cooling to a temperature below the dew point For all practical purposes, the above equations can be written in terms of the dry bulb temperature as follows: ( g 1 g 2 ) ( h1 h2 ) ? = ( g 1 g 3 ) ( h1 h3 ) ( ) ? = t1 t 2 ( t1 t 3 ) and, ( g 2 g 3 ) ( h 2 h3 ) (1 ? ) = = ( g 1 g 3 ) ( h1 h3 ) ( t2 t3 ) (1 ? ) = ( t1 t 3 ) For accurate calculations, we will not use this approximation! 94 Building Services Engineering: Building Air Conditioning Module (ME5508), Brunel University Example A cooling coil has an apparatus dew point of 6 oC and a contact factor of 80%. If moist air at 29 oC dry bulb temperature, 50% saturation enters the coil, determine the leaving dry bulb temperature and moisture content of the air.

Monday, November 25, 2019

Love Quotes From One Tree Hill

Love Quotes From One Tree Hill As these love quotes from the WB television series One Tree Hill attest, the characters are connected to each other by unbreakable threads of love. They fight and even get separated, but they are never far from each others thoughts. From Nathan and Haley to Karen, Lucas, and Dan, to the triangle formed by Brooke, Lucas, and Peyton, love links them all. These love quotes from One Tree Hill are like soulful music to a lovelorn heart: Brooke I wanted you to fight for me! I wanted you to say there is no one else that you could ever be with and that you would rather be alone than without me. I wanted the Lucas Scott from the beach that night; telling the world that hes the one for me. Karen I know youre searching for things, Lucas. And I hope with all my heart that you find the answers to your questions. But the answers that youre looking for are closer than you think. Theyre in your heart. And in the hearts of those who love you. Nathan You love this girl. And even if you catch pneumonia, your ass is gonna stay out here in the rain until you convince her to forgive you. Peyton At this moment there are 6,470,818,671 people in the world. Some are running scared. Some are coming home. Some tell lies to make it through the day. Others are just not facing the truth. Some are evil men, at war with good. And some are good, struggling with evil. Six billion people in the world, six billion souls. And sometimes... all you need is one. Peyton Dont laugh... but anytime I have a dream about my mom or Ellie, I like to think its their way of contacting me from the other side. Like dreams are emails for ghosts, and its their way of sending me a message. Nathan And if you’re lucky, if you’re the luckiest person on this entire planet, the person you love decides to love you back. Peyton I read a poem once... about a girl who had a crush on a guy who died. She imagined him up in heaven with all the beautiful angels... and she was jealous. Ellie is gone. I imagine her with all the badass angels now. Hanging out with them in their black leather jackets, causing trouble. But Im not jealous. I just... miss her. Peyton Imagine a future moment in your life where all your dreams come true. You know its the greatest moment of your life and you get to experience it with one person. Whos standing next to you? Peyton Losing your hearts desire is tragic, but gaining your hearts desire is all you can wish for. So if thats tragic, then give me tragedy! Rachel OK, let me get this straight. You dont have feelings for Lucas anymore, Peyton does, but shes willing to hide those feelings if you asked her to. Sounds like a pretty great friend to me.

Thursday, November 21, 2019

MGT499 Mod 1 Case - Harley Davidson Coursework Example | Topics and Well Written Essays - 1000 words

MGT499 Mod 1 Case - Harley Davidson - Coursework Example I believe to a very large degree that indeed the company Harley Davidson is currently proceeding towards its Mission, Vision and values. Given the threats the company has managed to survive quite a number of cares and threats that have come along its way over the years, I believe that the contemporary days are no different. The company has managed to trend over numerous threats over the years in the motorcycling industry. One of the hugest threats was posed by the introduction of the assembling mode of production by Henry Ford in the US. This produced at a very first and effective rate that Harley Davidson found very hard to cope with. It however braced itself and rose to the occasion. At the end of the day, the firm managed to pull through the ordeal. Harley Davidson is currently venturing very strongly in internet marketing. It has put a lot of effort and dedication towards meeting clients on the internet and making big its sells through the exploitation of internet options. This i s squarely in line with the well laid out missions, visions and values that it steadfastly holds. By increasing its market share through the internet, the firm is poised to make it big in the industry. It shall with no doubt manage to survive all the imminent threats that are posed on it. It shall also manage to survive much longer in the market without faltering or succumbing to pressure through achieving its visions, missions and values. One of the major missions of the company Harley Davidson is cost reductions. The company strives towards obtaining the most economical modes of production which demand less investment to be able to pull through. This shall go a long way in ensuring that the company is able to beat its competition effectively in the market and shall also see to it that it survives in the market for much longer. Another mission of the company is to provide sustainable and reliable motorbikes to the world. It has managed to stretch its throngs though out the expanse of the US and it aim at making it throughout the globe. The vision of the firm is to be a hub of innovation. It envisions itself innovating new technologies that can conquer the market. This is geared towards saving the world from motorbike accidents and increasing cruising powers, speeds and efficiency of the motorbikes. This shall be essential in eliminating any detriments and keeping the prospects of the company alive for much longer. The company also envisions itself producing at much faster speeds than the current rate of production. There comes some times when there is limited supply in the market and the production speed shall come in handy. The missions, visions and values of Harley Davidson ogre well with the stakeholders of the firm. The reduction in the costs of production means that the consumers shall be able to have their beloved products delivered at a very limited price. Another advantage to the stakeholders is the fact that by increased rates of production, the comp any shall be able to meet the required supply and hence shall not lose the any clients to the competition in the market. Through this, the firm shall be sustained for long. This shall offer security to the employees as well as to the shareholders right onto the firm. Through innovation, the firm shall not only be able to beat the competition in the market, it shall also be able to provide sustainable motorcycling products to the consumers. It shall live much longer in the market and be fruitful to both the employees and the shareholders.

Wednesday, November 20, 2019

Type 2 Diabetes In The Middle East Essay Example | Topics and Well Written Essays - 1250 words

Type 2 Diabetes In The Middle East - Essay Example WHO projects that the Middle East will account for the biggest rise in the occurrence of type 2 diabetes across the globe in 2030. UK’s medical periodical â€Å"The Lancet† predicts that the population with diabetes in this region will reach 60 million in 2030. Both projections are more or less similar but demonstrate the devastating outcome of widespread sedentary lifestyles and unhealthy diets. According to WHO, the biggest rise in mortality from chronic illnesses will take place in Africa and the Middle East. This predictive statistic is the product of a systematic analysis of 24 studies, which also showed the pooled occurrence of type 2 diabetes in the Middle East as 10.5%. More specifically, over 1% of Iran’s urban population over the age of 20 acquired type 2 diabetes in 2013 (Habibzadeh, 2012, p. 1).The most significant impact of type 2 diabetes on Middle Eastern communities is their health investments. Healthcare expenses are continually rising in the Mid dle East. The federation recently set expenditure for fighting both types of diabetes to increase from the current $16.8 billion to $22 billion in 2030 and $24.7 billion in 2035 (Bell, 2013; Kerr, 2014). This increase in healthcare investment is enough to bankrupt health industries of smaller UAE members and Middle Eastern countries. Investments in healthcare systems represent a financial burden to the Middle East, which is an economic impact. Another financial burden caused by type 2 diabetes is the loss of productivity.

Monday, November 18, 2019

Nursing and the healthcare skills and qualifications Essay

Nursing and the healthcare skills and qualifications - Essay Example ient care and patient needs in such a way that it shows the respect of the healthcare provider for the personal, social, and political beliefs of the patient. By doing so, the healthcare provider will be able to administer the proper healthcare services to the patient and also earn the patients trust and loyalty due to the respect that has been shown for his or her beliefs in life. It is important to remember that a nurse must first and foremost, be conscious of the people around her and the patient. Being on the front line of patient care, a nurse will often find himself or herself spending more time speaking to the patient and his family members than the primary care physician ever will. As such, the nurse is in a unique position to facilitate the speedy recovery of the patient and also help ease the anxiety of the family. Oftentimes, the family members and patients will be anxious, afraid, embarrassed or distressed about their health situation, so they need a professional who can show them the respect, sensitivity,and empathy that they require throughout the time of the patient in the hospital. By doing so, the nurse will be able to help ease the psychological stress that everyone in the family is undergoing. Basically, being a nurse is a social job. It requires the nurse to be able to communicate effectively with family members. Putting them at ease whenever necessary and ensuring that she or he can help bridge the communication gap that often transpires between the patient, family members, and the doctor in charge. Sometimes, it is a thankless job, but the reward for the nurse comes at the end when the patient gets better and finally goes home to his family. Keep in mind that modern day nurses now hold a position of importance in the patient care community that rivals that of the doctors. The evolution of the job description has changed so much since the time of Florence Nightingale that nurses today no longer just sit by the sidelines, awaiting

Friday, November 15, 2019

Comparison of Myths and Heroes

Comparison of Myths and Heroes Heroes of Medieval Times Throughout civilization there have been many changes in the views and ethics of society. Different civilizations believed that different distinct characteristics gave a person character which changes how the rest of society will view them. As civilization has progressed there have been many heroes thatare very different. Some of these heroes have been fierce warriors who fought with passion for their empire or kingdom, while others have been loyal and sacrificed their own well being for the greater good of a civilization. All of these heroes have been a role model for their society in one way or another. People always took pride in being connected with the heroes of their time. Having a hero gives people hope and determination, which is a very important characteristic. Wars have been won because a hero has given his people the inner strength to continue even though they are extremelyoutnumbered or losing horribly. They also give people honor in being part of their city or territory. Romans would believe in this aspect very strongly. Heroes have been the back bone that has helped different civilizations continue with the support of its people. If the people in each civilization had no honoror loyalty then we would have had many more different civilizations because ofconstant overthrows and takeovers. Even in todays world heroes and role models are changing. 10 years ago sports figures used to be the highlight of every bodies life; now people are looking towards our soldiers who are fighting overseas. The same change has happened throughout known civilization. Starting with Gilgamesh, the first known piece of literature, and going through the Aneid then on to The Sermon on the Mount the concept of the hero has changed drastically. The evolution of thehero in the medieval world has changed many times; a hero in one era would not be a hero in another and this will continue into the future. The first known hero was a man named Gilgamesh who was the king of Uruk. The story of Gilgamesh is the first known piece of literature and it is avery important epic of history. Uruk was a city located in ancient Mesopotamia, which was located between the Tigris and Euphrates rivers. This is the location where civilization is believed to have begun. His city was seen as asymbol of strength, it had very high walls that were very strong. This was seen as a symbol of greatness by many. Gilgamesh was supposedly two thirds god and one third human. He was seen as the greatest king on earth and possessed manypowers; however, Gilgamesh was a young man that did not treat his people withrespect which would get him into some trouble. The people of Uruk were troubled with Gilgameshs treatment and prayed to the Gods. Aruru sent a wild man named Enkidu who had the same strength as Gilgamesh. He was sent to calm Gilgamesh down so the people of Uruk could have a little more peace. Gilgamesh and Enkidu end up fighting, but afterwards become great friends and have many great adventures together. Enkidu and Gilgamesh were involved in a battle where they killed the Bull of Heaven. The gods met and realized that somebody had to pay for this crime; they decided Enkidu should pay the price and he suffered for 12 days before dying. This caused Gilgamesh a lot of pain and he finally learns the feeling of loss. Gilgamesh has a rough time dealing with the loss of his best friend and decides that he can not live any longer unless he is granted immortality. Gilgamesh then turns to a sage named Utanapishtim who describes a story of an epic flood. This flood is closely related to the flood in the Christian bible. Utanapishtim builds a great boat and carries two of every animal in it. The god Enlil was very angry because someone let Utanapishtim know about the flood. Enlil decided to grant Utanapishtim and his wife complete immortality. Utanapishtim then tells Gilgamesh about a thorny plant that only grows beneath the great sea. Gilgamesh then goes on a search for this plant and eventually finds it and takes it back to the surface. The plant was later stolen from Gilgamesh by a serpent that ate the plant and then shed its skin. This is where Gilgamesh realizes that there is not an escape from death (Lawall18-34). He discovers that fame is a sense of immortality, his story and essence will live on forever (Taylor). Gilgamesh during his own time was not seen as a hero; we now can see that he was a very important hero by the story that was left behind. At firs the treated his people with disrespect by making them feel inferior, but with the gods help he was given a more personal character. In the Course of the epic, Gilgamesh changes from an arrogant, oppressive ruler whose people complain to the gods to a person who has experienced friendship, love, andloss, and who has been humbled by grief and the fear of death (Lawall 16). He learned the feeling of loss from his best friends death and also about humanity from the story of the flood. We now see Gilgamesh as a man who went through many changes which were for the better. Gilgamesh becomes a responsible ruler who rules his community with wisdom and creates human cultural achievements that outlast his own reign and are passed down to future generations. (Abusch 1) A second literary work that incorporates the importance of heroes in the ancient world is the Iliad. This story was written by the 8th century poet Homer. He utilized the people surrounding him for his writings. His poems celebrate the values of ancient Greek civilization, incorporating many ancient myths and folk motifs and examining such themes as heroism, fate, honor,loyalty, and justice (Homer 1). All of the different themes that Homer used inhis writings describe the type of person that the Greeks believed deserved thetitle of hero. The beginning of the Iliad starts after Troy had already been at warwith Greek army. The war was started because Paris was the judge of a beauty contest that involved three goddesses. The winner of the contest was going to be Paris wife. Paris chose Helen to be the most beautiful women in the world, but she was already the wife of Menelaus. Menelaus blamed Paris and turned to Agamemnon, who was his brother and he led the Greek forces to wage war on Troy. Achilles, the great Greek warrior, is mad at Agamemnon for stealing a woman that he had won as a war prize. Achilles mother, Thesis, dipped him in a liquid when he was young, which gave him immortality, but she held him by his ankle giving him one weakness. Agamemnon had taken Achilles woman because he was stripped of a woman that he had won. This causes Achilles to stop fighting the war against Troy. Achilles prays to his mother Thesis and learns that if the Trojan warrior Hector dies that it is Achilles fate to also die. As long as Hector did not die Achilles fate would not come true. The war then becomes involved with the Gods; different gods were oneach side of the war and the war constantly went back and forth between theTrojans and Greeks. The Trojans start to turn the war to their side andPatroclus decides to help out the Greeks. Patroclus was Achilles best friendand knew that if he wore Achilles armor it would give moral to the Greektroops. Patroclus drives the Trojans almost all the way back into the city, butHector engages him in battle and kills him. He then stole the armor off thecorpse of Patroclus and wears it in the continuing battles. Achilles is enragedwhen he learns of his best friends death and calls on his mother to acquire anew set of armor. Achilles finally joins the Greek army and leads them inbattle. He has absolutely no fear because he knows that his fate is death; manyTrojans are slaughtered by his revenge. Achilles finally meets with Hector andkills him. Hector, surely you thought as you killed Patroclus you would besafe, and since I was f ar away you thought nothing of me, o fool, for anavenger was left, far greater than he was, behind him and away by the hollowships (Mueller 100). After he killed hector he defiles his body by dragging Hector behind his horse because he believes Hector deserves this cruel treatment. The Trojan War is later won by the Greeks when they used a horsemade of wood to gain access to the city (Lawall 107-205). The Greek morals were very different than the morals we have today or even the morals during the time of Gilgamesh. When Achilles took the womenas a war prize it was a normal occurrence. That was what the society expected to be done. The Greeks believed in honor and loyalty for ones country as well as a man being a good strong warrior. The chief aim of a heros life is to win fame and immortality, do his duty, fulfill his fate, and guard his honor and that of his companions (Homer 3). Achilles resembles all of these characteristics; although he did go overboard with revenge at times. The Trojan War was started because Paris took Menelaus wife; he did not earn her in battle like a true warrior would. This caused the great war which was the demise of Troy. Achilles is seen as a hero because even though he knew his fate was death, if Hector was killed, he still fought for his kingdom, friend, andeven foe, Agamemnon. His mother warned him of what would happen, but the death of his friend needed to be revenged as well as the theft of Menelaus wife. Hewas strong and a great warrior, these qualities are the epitome of a Greekhero. These qualities are very different from the story of Gilgamesh where we say Gilgamesh become more of a humanitarian. Gilgamesh became more caring and forgiving to his people and his people desired this. If Achilles did that hewould be seen as a weak warrior; he would probably be challenged by anotherwarrior because of this weakness. Hector is also seen as a hero in this story because he fought with great honor for Troy. He knew that Achilles was a great warrior that would bevery difficult to defeat, yet he still engaged him in battle with honor andonly requested to die with dignity. These qualities are still very different from other civilizations that follow. A story from the Roman era that is closely related to Iliad is the Aeneid. This story was written by Romes favorite poet Virgil. This story was a rip off of Homers story and described how Rome was suppose to be founded (Taylor). Virgil wrote the story to describe how important Roman family values and sacrifice for ones country was very important. Virgil also wrote this text by taking payments from the Roman government which leads people to believe it was created to show Roman people the attributes that were desired in their society. This storys main character is Aeneas who was the prince of Troy. Aeneas had managed to make an escape while the city was being overthrown and he wasgiven a mission from the Gods. His mission was to find the city of Rome. This was seen as a very important duty because during that time if the Gods told aperson to do something it was especially important. This is the reason Romans believed they were special; the Gods wanted them to be founded. While Aeneas was sailing to the Italian peninsula the gods decided to test him. They created a large storm that blew Aeneas very far off course, and this landed his ship in Carthage. When he arrived he was welcomed by Queen Dido, who was a widow. In Carthage, Aeneas is viewed as a hero simply because he fits the physical description. Didoand Aeneas end up going on a hunting trip, but before they could make it backto the city a storm came and forced them to take shelter. They found a cave and decided to stay the night and wait for the storm to subs ide. While they were in this cave they engaged in a mutual attraction and had an intimate encounterwith each other. Aeneas does like Dido, but he does not take their relationshipas seriously as Dido does. She believes that their encounter in the cave was amarriage vow. Dido being extremely attached and attracted to Aeneas offers him theopportunity to stay in Carthage and become king. This is a very goodopportunity for Aeneas because he doesnt have to set up anything; the entirekingdom is already there and he could become rich and have a wife (Taylor). Aeneas is put in a very tough situation because he was summoned by the Gods tofound Rome, but he does love Dido and would love to stay and rule Carthage. While Aeneas was contemplating his decision the Gods sent Mercury as a messengerto remind him of his duty to find Rome. Aeneas makes the decision to leave thecomfort and ease of staying in Carthage to go back on his mission and find Rome. He is on fire to fly, and leave the too-well-loved city, astoundedat so unlooked-for a warning and at the command of the gods (Shairp 405). This passage describes how Aeneas felt about leaving Carthage. This wasnt a veryhard decision in the end because he knew that he was true to the Gods and whatwould be the city o f Rome. Aeneas and his men set sail to search for Rome and Dido completely loses her sanity. She is completely heartbroken and commits suicide, but before doing so she threatens Rome to be an enemy for alleternity. Aeneas ends up going to the land of the dead to gain some information and he meets Dido there. He tried to explain his sorrow and guilt he felt forher death, but she was reluctant to accept his apology. Aeneas ends up going onmany more expeditions and journeys, but he never finds the city of Rome. His descendant Romulus finds the city in 753 BCE. Aeneas gave up many different things that he knew he had for sure togo and try to find the city of Rome. He could have stayed in Carthage with Didoand had love, wealth, fame, and a great life; however, he decided that Rome was more important and gave up everything to go on his search. He was seen as a heroto all Romans because he resembled all of the family values that Romans had. They believed in loyalty, honesty, sacrifice, and respect. It could be said thatAeneas laid down the ground rules for the Roman values and qualities. He showed great respect for the Gods by following their orders and continuing to find Rome, and sacrifice by giving up certain wealth. This led Romans to believe that theircity was important and it was worth losing everything for. If it were possibleto have a conversation with Aeneas in the land of the dead he would say that even though he had failed to find Rome, it was worth the effort. Even if heknew he would never find Rome, his loyalty to the Gods would have kept him fromstaying in Carthage. This quality gives Aeneas a lot of character and gives himthe title of hero. The Romans also believed in many of the same characteristics the Greeks believed in, such as being a fierce warrior. When Christianity started to come into the Roman world it changed the views of what a hero was. TheRomans believed that if they were disrespected they returned the favor to whoever disrespected them. However, the Christian bible started to make its wayinto the Roman world and this was a very drastic change. In the New Testament Matthew 5-7 it states: Blessed are the poor in spirit, because theirs is the Kingdom of Heaven. Blessed are they who sorrow, because they shall be comforted. Blessed are the gentle,they shall inherit the earth. Blessed are they who are hungry and thirsty forrighteousness, because they shall be fed. Blessed are they who have pity, because they shall be pitied. Blessed are the pure in heart, because they shallsee God. Blessed are the Peace makers, because they shall be called the sons ofGod. Blessed are they who are persecuted for their righteousn ess, becausetheirs is the Kingdom of Heaven. (Lawall 1085-1086) These were the opposite views of what the traditional Romans believed. People in Rome started to turn to Christianity because it gave themindividual hope in something. It gave people the chance for individual salvation. The New Testament describes that the true believers will reach heaven, and fierce warriors who have no pity will not reach salvation. Thisshows another example of how civilization has changed its views of heroes. Heros will consistently change throughout the rest of civilization as different lifestyles and ethics come into play. All of the heroes discussed were very important role models to the people in that time. Heroes give hope and meaning in peoples lives; even though some are fierce warriors while otherstry to benefit society. Gilgamesh, Achilles, and Aeneas stories have lived on for thousands of years; this makes them true heroes that will continue to be an important role in civilizations to come. ReferencesAbusch, Tzvi. The Development and Meaning of the Epic of Gilgamesh: AnInterpretive Essay. Journal of the American Oriental Society 121. No. 4 Pg. 614-22.Homer, Iliad, Plot Summary and Discussion Issues. Goucher.11/12/2007. Pg.1-5. http://faculty.goucher.edu/eng222/homeriliad.htm. Homer. Literature Resource Center. 11/01/2007. Pg. 1-4. http://galenet.galegroup.com.ezproxy.lib.fit.edu/servlet/LitRC. Hooker, Richard. Gilgamesh. WSU. 11/01/2007. Pg 1-10. http://www.wsu.edu/~dee/MESO/GILG.HTM. Lawall, Sarah. Gilgamesh, The Iliad, The Aeneid, The New Testament. The Norton Anthology of Western Literature. Vol. 1. New York: W.W. Norton Company 2006. Pg. 15-34, 100-205, 926-1023,1082-89. Mueller, Martin. Fighting in the Iliad The Literature Resource Center. 1984. Pg. 1-12.http://galenet.galegroup.com.ezproxy.lib.fit.edu/servlet. Publius Virgilius Maro: The Aenid,. Authors Digest. Volume 17. Author Press1908. Pg. 1-4. Shairp, J. C. Virgil as a Precursor of Christianity. The Princeton Review. Vol. 4. July-December: 1879.Pg. 401-20. Taylor, Robert. Lecture, Civilization 1. Florida Institute of Technology. Fallsemester 2006. Why is Achilles the greatest of the Greek heroes?. About.com. 11/19/2007. Pg. 1. http://ancienthistory.about.com/library/weekly/aa092899a.htm

Wednesday, November 13, 2019

Does Competition Bring Out The Best In Us? :: essays research papers

COMPETITION BRINGS OUT THE BEST IN US The score was 14-15. My team was losing the sectional championship game by just one point. Now we had to give our all to win, or we would be regretting the loss for years to come. In order to win, we had to get along with everyone on, and off, the volleyball court. We had to believe in ourselves, but most of all, we had to use all of the competitive skills that we had learned throughout our lives from parents, coaches, and our own experiences. Each second, the game became more and more intense. After playing our hearts out for two rotations, the score was now in our favor. We were winning 16-15. As soon as we were in control of the game, we competed at a collegiate level that no one would have thought was possible. Our skills were equal to the skills of a college player. The hitters could jump so high that their entire arm was swinging above the net. The blockers all had at least half of their arm making a wall over the net. The defensive players all dug up balls that looked like comets beaming onto the court. We were just twelve girls on a high school team, but the skill and talent we were showing to win against our rival could have been even better than a professional team. We ended up being the team that was celebrating victory in the locker room. We all had our chance to yell, cheer, and jump up and down after we shook our opponents hands. We finally had the opportunity to celebrate an amazing victory. We were even int erviewed by reporters and photographed by staff of the Hearld Argus, our city’s paper. Competition brought out the best in each one of us that night and that season. The skills we learned and showed on the court will never be forgotten. We learned to get along as a team, believe in ourselves, and to never give up on a goal. In order to succeed, people must compete. Competition can bring out the best in everyone. During a single day, people in some way compete with themselves or with others. They compete to win a sporting event, to get a raise or promotion in their workplace, to receive the best grades on tests or homework assignments, and to be the best at everything they do.